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Abstract. The paper presents a neural network algorithm for analyzing online user reviews
of drugs. The algorithm was validated on specially prepared and annotated corpora. The basis
of the algorithm is a neural network model combining convolution and recurrent layers, context-
dependent vector representations of words, conditional random fields and additional features of
words obtained from different dictionaries. The proposed model showed accuracies comparable
to the state-of-the-art results for this task on the corpora for other languages.

1. Introduction
Internet texts, in particular, messages from social networks, discussion groups and forums,
can contain a large amount of meaningful information, including that related to consumption
sphere and healthcare in general. Patients’ opinions may be beneficial for evaluating efficiency
of medicines in addition to clinical investigations. Messages in Internet sources often contain
unique characteristics of adverse reactions which clinical trials may not have revealed due to
time limitations. In addition, users may report the effect of non-standard usage of medicines on
diseases other than prescribed. Such information would be very useful for a pharmacovigilance
database where risks and advantages of drugs would be registered for safety monitoring and for
the possibility to form hypotheses of using existing drugs for treating other diseases. The above
gives relevance to developing methods for automated extraction of information on efficiency of
medicines from Internet review texts.

The aim of this work is to propose the efficient neural network algorithm for the task of
extracting significant pharmacological entities from Russian-language drug reviews on base of
up-to-date neural network solutions and the first-created corpus of labeled examples in order to
evaluate the state of the art of this task for the Russian language.

2. Related works
There are many methods in literature, devoted to analysis of English-language texts on medicines,
which accuracy is based on corpora containing data of different sources: healthcare records,



Table 1. A summary of existing corpora of texts from social networks

Корпус Кол-во сущностей F exact
1 F partial

1

CADEC [4] 8118 0.661 0.905
PsyTar [5] 7414 0.49 –
TwiMed [6] 1200 – 0.648
Twitter annotated
corpus [2]

2130 – 0.611

scientific articles, social net messages. In this article, we consider the last source: reviews of
Internet users on medicines. The analysis of this source is assumed as more complicated because
these texts in many cases wrote on speech language with mistakes, without following to formal
grammar and punctuation rules.There are many methods in literature, devoted to analysis of
English-language texts on medicines, which accuracy is based on corpora containing data of
different sources: healthcare records, scientific articles, or social net messages. In this article, we
consider the last source: reviews of Internet users on medicines. This source is assumed more
complicated to analyze because texts are often written in colloquial language, contain mistakes,
and do not following formal grammar and punctuation rules. The most widely known corpora
of this type are СADEC, PsyTar, Twimed and Twitter.

CADEC corpus of adverse drug event annotations - is a corpus collected of 1253 medical
posts with 7398 sentences. The following entities were annotated: Drug, ADR, Symptom,
Disease,Findings, totally on 13 drugs.

TwiMed corpus (Twitter and PubMed comparative corpus of drugs, diseases, symptoms, and
their relations)[1] contains 1000 tweets and 1000 sentences from Pubmed for 5 or 30 drugs with
annotations for 3 144 entities, 2 749 relations, and 5 003 attributes.

Twitter annotated corpus [2] consists of randomly selected tweets containing drug name
mentions. Two types of annotations are currently available: Binary and Span. The binary
annotated part contains 10 822 tweets annotated by the presence or absence of ADRs. 1 239
(11.4%)tweets contain ADR mentions and 9583 (88.6%) do not. The span annotated part
contains 2 131 tweets (which include 1 239 tweets containing ADR mention from the binary
annotated part). Marked Types are: ADR, beneficial effect, indication, other (medical signs or
symptoms).

The PsyTAR corpus contains 891 reviews on medicines, collected randomly from an
online healthcare forum and split into 6 009 sentences. The texts have the following entities
labeled: adverse drug reaction (ADR), withdrawal symptoms (WD), sign/symptoms/illness
(SSI), indications for use (DL), and other.[3]

The work [5] achieved F exact
1 = 0.49 on PsyTAR used the UMLS dictionaries, morphological

and syntactic features, and negation words. The work [2] demonstrates F partial
1 = 0.611 on

the Twitter corpus with use of a wide range of features, including word forms, linguistic
characteristics, parts of speech, semantic tags. A wide range of features is used for Twitter
texts analysis: word forms, linguistic characteristics, parts of speech, semantic tags.

The current level of accuracy, on texts from Internet sources, is usually achieved using modern
deep learning methods based on bi-directional LSTM layers (BiLSTM) (F partial

1 = 0.648 [6]
with Part-of features -Speech (PoS) along with pretrained models of vector representation of
words.Some works use a combination of BiLSTM layers with convolutional layers of character
encoding [7], as well as a layer based on Conditional Random Fields (CRF), to determine the label
of the token(слова) [8] (F exact

1 = 0.661 на CADEC). Therefore, further to create our model for
working with Russian-language texts, we are based on the BiLSTM deep learning architecture
along with the use of modern pre-trained language models of the Russian language. Table 1



shows the results obtained using different approaches and features.

3. Materials and methods
3.1. Russian drug review corpus
The corpus we created for this work contains 1 660 texts of patient reviews on medicines of
different pharmacotherapeutic groups. The language of the reviews does not always follow formal
grammar and punctuation rules of Russian. The corpus has mentions of the following entities
manually labeled: Medication (17 779 mentions), Adverse Drug Reaction (844), Disease (9 285),
Note (2 319). Labelling was performed by annotators qualified in medicine or pharmacy. A more
detailed description of the corpus, as well as entity type definitions that the annotators acted in
accordance with are presented at sagteam.ru/en/med-corpus.

Before further analysis, an input text is split into sentences and then into tokens (words and
punctuation marks), and each word is assigned its part of speech with the help of the UDpipe
library, which was chosen as a baseline method at the CoNLL competition [9].

3.2. Model components
Our model is built out of the following neural network modelling components:

(i) Fully-connected layer (FCL) in which each artificial neuron receives all the components of
an input vector, performs a weighed sum of them, and after subtracting the neuron’s bias
passes the sum through its activation function to obtain the neuron’s output activity value.

(ii) The embedding stage, which converts words into continuous vectors with the help of
preliminarily-trained language models. As such model we use the ELMo deep neural
network, trained on the Russian WMT News [10] corpus, as published in the DeepPavlov [11]
library.

(iii) Convolution layer, in which each neuron receives only those components of an input vector
that fall into the neuron’s receptive area, and the weights by which these components are
multiplied when summed are shared over the neurons.

(iv) Long short-term memory (LSTM) [12], a sequence-processing layer in which the output
activity value of a cell depends, in addition to weighed sum of the cell’s input components,
on the memory value stored when processing the previous element of a sequence.

(v) Conditional Random Fields (CRF) [13], one of the commonly used methods that takes a
sequence of tokens as input, estimates the probabilities of labels (from a predefined set),and
returns the best scoring label sequence.

3.3. Entity definition neural network model
We consider the problem of mention detection and classification as a multi-label classification
of tokens – words and punctuation marks – in sentences. For each of the three entities – ADR,
Medication and Disease – its own neural network is trained. That way, mentions of different
entities can intersect, so that one word can have several tags. The output for each token (word)
is a tag in the BIO format: the “B” tag indicates the first word of a mention of the сonsidered
entity, the “I” tag is used for subsequent words within the mention, and the “O” tag means that
the word is outside of an entity mention.

The topology of model is presented on Fig. 1. For encoding tokens into input vectors we use:
a) character-wise one-hot encoding following by convolution layer, b) word vectors obtained from
the embedding language model (see Section 3.2), c) dictionary features obtained by looking the
tokens up in the Vidal [14] and Meshrus [15] dictionaries, along with part-of-speech (PoS) tags
one-hot-encoded [16], e) sentiment features, including psycholinguistic markers (further denoted
as PM) and features from the LIWC [17] dictionaries (denoted as LIWC). Then, the vectors thus

sagteam.ru/en/med-corpus


Figure 1. Summary of the neural network architecture. An input word sequence is processed
by a bidirectional LSTM, where hidden states of forward LSTM and backward LSTM are
concatenated. Finally, the resulting vector is processed by a CRF-based layer (in the model
denoted Basemodel_FC, the latter is replaced with a fully-connected layer with the SoftMax
activation function). The outputs of the model are the possibilities for a word to be outside of
a mention (and thus to have the O-tag), to be at the beginning (B-tag) or inside (I-tag) of a
mention of the entity the model is trained for.

encoded are presented to the neural network model, consisting of BiLSTM layers and an output
layer, either fully-connected with the SoftMax activation function or CRF-based.

The performance of the model is characterised by two metrics commonly used for this type
of tasks (for instance, in the works surveyed in Section 2):

(i) F exact
1 – F1-score calculated over mentions whose starting and ending points match the

ground truth labelling exactly;
(ii) F partial

1 , which is calculated on base of the number of words for which belonging to mentions
was correctly identified. This metric is thus able to characterize partial match of the labelling
to the ground truth.

3.4. Experiments
We compared the following variations of the model depicted in Fig. 1: different combinations of
input features, different number of BiLSTM layers, and two types of output layers.

The variation denoted in the tables as Basemodel_CRF repeats the model configuration from
Fig. 1 without the use of additional features. Basemodel_FC differs from the Basemodel_CRF
only in that the output layer is a fully-connected one with Softmax activation function. Further
configuration changes are noted the tables by the abbreviations defined in Section 3.3.

The performance of the models was assessed by 5-fold cross-validation. The training set of
each fold was further divided into the training set proper and the validation set, in the 9:1
proportion. Training was stopped upon meeting the early stopping criterion on the loss function
on the validation set, but not later than after 70 epochs. The loss function was cross-entropy,
and training was performed by the Adam optimizer with cyclical learning rate [18].

The performance of different model variations is presented in Table 2. The best scores by the



Table 2. Entity Definition Accuracy(%).

ADR Medication Disease
Модель F partial

1 F exact
1 F partial

1 F exact
1 F partial

1 F exact
1

Basemodel_FC 45.0 ± 2.4 28.7 ± 1.3 82.0 ± 0.6 75.6 ± 0.4 62.0 ± 0.8 50.9 ± 2.2
Basemodel_FC
+ Meshrus

45.6 ± 3.4 27.3 ± 2.9 82.2 ± 1.0 76.0 ± 1.1 62.7 ± 0.5 51.1 ± 1.5

Basemodel_FC
+ PoS, Meshrus

42.4 ± 3.7 27.7 ± 3.2 82.2 ± 0.4 75.5 ± 0.5 62.3 ± 0.9 51.3 ± 0.9

Basemodel_CRF
+ Meshrus

45.2 ± 1.7 30.2 ± 1.1 82.2 ± 0.4 75.7 ± 0.6 62.7 ± 0.9 52.1 ± 0.3

Basemodel_CRF
+ 3-layer
BiLSTM +
LIWC + PM +
PoS + Meshrus
+ Vidal

45.0 ± 4.9 33.2 ± 2.9 82.0 ± 1.1 76.6 ± 0.8 63.7 ± 0.9 56.0 ± 0.6

F exact
1 metric are 76.6, 33.2, and 56.0 for Medication, ADR и Disease entity classes respectively.

The results obtained are comparable with the level of accuracy obtained for similar cases in other
languages, and can be considered as state of the art for the task.

4. Conclusion
The proposed algorithm for extracting pharmacological information from Russian-language texts
demonstrates accuracy comparable to those obtained for other languages. The relatively low
accuracy results for detecting mentions of adverse drug effects (ADR) is explained by the low
number of such examples in the current version of the collected dataset. Further, we plan to
replenish the dataset with more ADR entities to increase the accuracy of their detection.
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